
addFirst: newObject
"Add newObject to the beginning of
the receiver. Answer newObject."

firstIndex = 1 ifTrue: [self makeRoomAtFirst].
firstIndex := firstIndex - 1.
self basicAt: firstIndex put: newObject.
^newObject

A method returns the object receiving
the message ("the receiver") unless ^ is
used to explicitly return the result of a
line of code. ^ is often used to force a
return from a loop.

"basicAt: firstIndex put: newObject" is a
two-argument keyword message sent to
self. basicAt:put: is the method selector,
the basicAt: argument is firstIndex, and
the put: argument is newObject.

self is the object receiving
the message and executing
the matching method.

addFirst: is the method selector.

The variable assignment operator :=
is spoken as "gets" so firstIndex gets
the value of firstIndex minus one.

"- 1" is a binary message sent to
firstIndex. The minus symbol is the
method selector, and 1 is the argument.

newObject is the method argument. It
is a variable that references an object.
Its value can not be reassigned.

ifTrue: [] is a boolean conditional
that will only execute the code
within a block [] if the object
receiving the message is true.

Comments are enclosed in
double quotes while a string
is enclosed in single quotes.

makeRoomAtFirst is a unary message sent to self.

A period/full stop is the statement separator.

Cincom Smalltalk™ – The Language on Two Pages

Language and Environment
• Smalltalk is a language and an environment

to use the language. This sheet focuses on
the language element.

• Everything is an object. Every object is an
instance of a class which defines the
behavior of the object.

• Classes inherit from class Object,
using single inheritance.

• One does things by sending a message to an
object. If the message is understood by the
object, then it has a matching method which
it executes.

• Objects have instance variables that can only
be accessed by the methods of the object. All
methods are public to all objects.

• Methods can have temporary variables that
exist only for the execution of the method.
For example the variable newSelf is declared
and assigned as follows:

changeCapacityTo: newCapacity
| newSelf |
newSelf := self copyEmpty: newCapacity

• nil is the unique instance of the class
UndefinedObject and is the default value
of a variable which has had no explicit
value assigned.

• super is used to invoke the superclass'
implementation of a method.

• The boolean values true and false are single
instances of the classes True and False.

• Some objects are literal types: Integer
(123), Float (123.4), Character ($a), String
('abc'), Symbol (#abc) and Array (#(123
123.4 $a 'abc' #abc)) when all its elements
are literals.

Method Basics
Execution order is evaluated left to right until the
statement separator (a period/full stop: .) is
reached. Everything within parentheses () is
evaluated first, with the contents of the inner-
most parentheses evaluated first. Messages are
evaluated as follows:

All unary messages, those with no arguments,
are evaluated first.

Then all binary messages, those with one
argument whose method selector does
not end in a colon and is one or more
non-alphanumeric symbols.

Then keyword messages, which take one or
more arguments and use a word with a colon
before each argument.Anatomy of a Method

Page 1Cincom Smalltalk™ – The Language on Two Pages Page 1

Language and Environment Method Basics

Anatomy of a Method

Block Basics
These are called anonymous or lambda
functions in other languages.

[1 + 2] is a Block. The simple way to get it
to execute is to send it the value message.

[1 + 2] value. "returns 3"
[:x | x + 2] value: 1. "returns 3"

A two block argument block

[:x :y | x + y] value: 1 value: 2. "returns 3"

Processes are a good example of block usage:

[(Delay forSeconds: 5) wait.
Transcript show: 'done'] fork.

Streams
WriteStream is used to write a sequence of
objects to a collection.

writeStream := WriteStream on: Array new.
writeStream nextPut: 'Once'.

"returns 'Once' "
writeStream nextPutAll: #($a 42 2003).

"returns #($a 42 2003)"
writeStream contents.

"returns #('Once' $a 42 2003)"

ReadStream is used to read a sequence of
objects from a collection.

readStream :=
'Once upon a time' readStream.

readStream next. "returns $O"
readStream upTo: $o.

"returns 'nce up' "
readStream skip: 2.
readStream peek. "returns $a"
readStream upToEnd. "returns 'a time' "
readStream atEnd. "returns true"

Boolean Behavior
The boolean values true and false are single
instances of the classes True and False.

They are the building blocks of conditional
and looping program execution. You can
ask a range of questions of something and
get an answer true or false such as:

true not. "returns false"

and you can ask several questions:

1 even or: [2 odd]. "returns false"

23 < 25 and: [26 > 14]. "returns true"

You can then do something if those
questions are true or false:

1 = 1 ifTrue: ['equal']. "returns 'equal' "
1 = 1 ifFalse: ['unequal']. "returns nil"
(10 / 2) isInteger ifTrue: ['integer']

ifFalse: ['fraction']. "returns 'integer' "

Booleans can control looping:

i := 1.
[i > 10] whileFalse: [i := i * 2].

The first block is evaluated and if the result is
false the second block is evaluated and then
the loop starts again. whileTrue: also exists.

Fixed Iteration
10 timesRepeat: [Transcript show: 'ping' ;

cr].
1 to: 10 do: [:index |

Transcript show: index printString; cr].

You can also create an infinite loop by sending
a block the message repeat. This can be
escaped from by pressing Control + Y.

Collections
The Collection hierarchy provides a fundamental set of classes that group objects
together. These include String, Array, OrderedCollection and Dictionary.

An Array is a fixed length Collection where each slot has an automatic integer based
key. A String is an Array of Characters. An OrderedCollection is an expandable version of
Array. A Set has no order and no duplicates. A Dictionary allows you to define unique
keys and access its contents via those keys.

alphabet := 'abcdefghijklmnopqrstuvwxyz'.
vowels := nil.
upperVowels := nil.
firstVowel := nil.
aSentence := 'This is going to change.'.
oc := OrderedCollection new.

vowels := alphabet select: [:letter | letter isVowel]. "returns 'aeiou' "
upperVowels := vowels collect: [:letter | letter asUppercase]. "returns 'AEIOU' "
firstVowel := alphabet detect: [:letter | letter isVowel] ifNone: [nil]. "returns $a"
aSentence := aSentence , ' But not by much' .
"comma is the concatenation method. The expression returns
'This is going to change. But not by much' "
aSentence findString: 'going' startingAt: 1. "returns 9"
aSentence includes: $e. "returns true"
aSentence contains: [:each | each isLowercase]. "returns true"
aSentence endsWith: 'change.'. "returns false"
(aSentence allSatisfy: [:each | each isLowercase])

ifFalse: [aSentence := aSentence asLowercase].
"returns 'this is going to change. but not by much' "
alphabet do: [:letter | oc add: letter].
"returns alphabet, and oc now contains each letter in a slot"
oc at: oc size. "returns $z"
oc removeLast. "returns $z, and oc has shrunk by one slot"
oc addLast: aSentence. "adds slot at end with content
'this is going to change. but not by much' "

#(5 4 2 6) inject: 0 into: [:each :result | each + result].
"returns 17, (5+4+2+6). The first time the block is called result gets the value 0
(it is 'injected' into the block) and then the block iterates over the Array with
result getting the value of the previous block execution each time"

Cincom, the Quadrant Logo and Cincom Smalltalk are trademarks or registered trademarks
of Cincom Systems, Inc. All other trademarks belong to their respective companies.

© 2014 Cincom Systems, Inc.
FORM CSEN1101006 12/2014
Printed in U.S.A. All Rights Reserved

Questions?
Then check out www.cincomsmalltalk.com
or e-mail eurosmalltalk@cincom.com.

Cincom Smalltalk™ – The Language on Two PagesPage 2

World Headquarters • Cincinnati, OH USA • International 1-513-612-2769

Page 2 Cincom Smalltalk™ – The Language on Two Pages
Block Basics Boolean Behavior Collections

Streams

Fixed Iteration

Questions?
Check out www.cincomsmalltalk.com
or email eurosmalltalk@cincom.com.

World Headquarters • Cincinnati, OH USA • US 1-800-224-6266 • info@cincom.com • cincom.com/contact-us

Cincom and Cincom products and services mentioned herein as well as their respective logos are trademarks or registered
trademarks of Cincom Systems, Inc. All other product and service names mentioned are the trademarks of their respective companies.
Please see https://www.cincom.com/us/company/terms-policies for additional trademark information and notices.
© 2023, 2014 Cincom Systems, Inc. Printed in U.S.A. All Rights Reserved FORM CSEN1101006 12/23

http://www.cincomsmalltalk.com
http://www.cincom.com/contact-us
https://www.cincom.com/us/company/terms-policies
http://www.cincom.com

